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RECURRENCE INTERVALS ANALYSIS OF CSI 300 FUTURE 

BASED ON HIGH FREQUENCY DATA 

 

 

Abstract. Based on 1-minute high frequency close prices of CSI300 future, 

the statistical properties of volatility and trading volume recurrence intervals 

exceeding different thresholds are studied in this paper. The result shows that the 

probability density curves of two recurrence intervals exhibit scaling features. A 

Weibull function can be used to fit the tail in two distribution curves of scaled 

recurrence intervals. The memory with short and long term is verified in two 

recurrence intervals by conditional probability density and detrended fluctuation 

analysis (DFA), which indicate that the recurrence intervals can be predicted. 

Using the multifractal detrended fluctuation analysis (MFDFA), we discover that 

two recurrence intervals possess multifractality. In addition ,the relationship 

between volatility and trading volume recurrence intervals is analyzed.It is shown 

that the appearance of large volatility and large volume is synchronous. Finally, we 

discuss the application of recurrence intervals. 

Keywords: Recurrence intervals analysis; Scaling features; Probability 

density function; Memory; Multifractality Volatility–volume recurrence intervals 

analysis. 
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1. Introduction 

The extreme events in financial markets appeared more frequently in 

recent years, such as the Asian financial crisis in 1997 and the global financial 

crisis in 2007. Apparently, understanding the rule in the occurrence of extern events 

is very important to risk management. New nonlinear analysis methods are 

employed in financial markets for its similarity of natural system, such as fractals 

and long-term memory, which are utilized to mark the natural system features 

originally(Kantelhardt et al., 2002; Guo, et al., 2012; Fantazzini, 2016; Lahmiri, 

2017). Nowadays, the research on statistical properties of recurrence intervals 

attracts much attention (Bunde et al., 2007; Zhao et al., 2016; Xia et al., 2016). 

Yamasaki et al. (2005) found that there are scaling feature in recurrence intervals 

distribution of seven typical stocks and currency exchange data, and memory with 

short and long term was observed in recurrence intervals sequence. Wang et 

al.(2006, 2007) found that stretched exponential function can be used to fit the tail 

of scaled recurrence intervals distribution in stock, commodities, interest rates, and 

currencies markets. The further investigation by Wang et al.(2008, 2009) indicated 

that there was multi-scaling behavior in the recurrence intervals distribution, and it 

originated from capitalization, risk, number of trades, and return factors. Through 

analyzing recurrence intervals of realized volatility in Shanghai stock market, Ren 

et al. (2009a, 2009b, 2010a) found that the recurrence intervals distribution showed 

a good scaling behavior, and a memory with short and longterm was presented in 

realized volatility recurrence intervals. Moreover, Ren et al. (2010b) studied 

positive and negative returns recurrence intervals sequence based on the 1-minute 

data set, and found that there are symmetrical features and Power-law tails 

displayed in two recurrence intervals distributions. However, Xie et al. (2014) 

found that there were no scaling behaviors in recurrence intervals by analyzing the 

energy futures volatility, which is different from the above conclusions. 

The Chinese stock index 300 future abbreviated as CSI 300 future is the 

first financial future in China future markets. According to the industries stocks 

traded in Shanghai and Shenzhen stock markets, the CSI 300 is a stock market 

index designed to reflect the overall features of Chinese stock market. The CSI 300 

future makes up unilateral mechanism for the stock index, and is widely concerned 

by the researchers and practitioners. Thus, the risk features of the CSI 300 mean a 

lot to general market investors and stock future index investors. For the objectivity 

of risk, if the investors or risk managers have a good command of the recurrence 
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intervals, the risk will be alleviated.   

Whether the volatility and trading volume recurrence intervals in CSI 300 

market have scaling behavior and memory? In this paper, statistical and nonlinear 

methods are used to analyze the volatility and trading volume recurrence intervals 

of CSI 300 future.The rest of this paper is showed as follows, section 2 introduces 

the data description; section 3 gives the probability density function; section 4 

studies the memory with short and long term in two recurrence intervals; section 5 

investigates the relationship between two recurrence intervals; and the conclusion 

is discussed in section 6.  

2. Data 

We select 1-minute prices of CSI 300 future from wind Information co., 

Ltd for empirical research. The studied period is selected from 16 April 2010 to 31 

August 2015, including 1284 trading days.  

The volatility is defined as the absolute of logarithmic price return between 

two consecutive minutes, that is,  

     1ln lnt tR t P P  , 1,2, ,t N .             (1) 

Where N  is the length of sequence, 346680N  . In sample set, the CSI 300 

future trades from 9:15 to 11:30 in the morning and from 1:00 to 3:15 in the 

afternoon, so there is a total of 270 minutes transactions in one trading day. The 

 V t  denotes the trading volume corresponding to the volatility. In many stock 

markets, the volatility and trading volume have intraday pattern, i.e., U-shaped or 

L-shaped pattern. This pattern should be removed, or the recurrence intervals will 

show daily periodicity phenomenon. The intraday pattern of volatility and volume 

are defined as  
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The  iR s and  iV s  represent the volatility and trading volume at moment s  of 

day i , respectively. The n  is the total of trading days, i.e., 1284n  . As presented 

in the Figure1, the volatility and trading volume have intraday pattern, the volatility 

intraday pattern is L-shaped, and the volatility is large at the beginning of trading, 

and slightly shocks between 11:30 closing and 13:00 opening. For trading volume, 

the intraday pattern exhibits U-shaped. In order to avoid the daily periodicity 

phenomenon, intraday pattern should be removed by 

 
 

 
'

R t
R t

MR t
                        (4) 

 
 

 
'

V t
V t

MV t


                       

(5)  

Then, standardizing the volatility and trading volume by their standard deviations 
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The .  symbol implies the sequence mean. The volatility recurrence interval is 

defined as the time interval of two successive volatilities exceeding threshold q  

     1q i t i r q t i r q      , 2,3,i                            
(8) 

Similarly, the recurrence interval of trading volume is 

     1Q i t i v Q t i v Q      , 2,3,i                   
(9) 
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Figure1.Intraday patterns of volatility and trading volume of stock index 

futures 

 

Figure 2(a) gives the volatility recurrence intervals of different thresholds

q . The threshold set  2,3,4,5,6q   is selected in this paper. The double 

logarithmic figure of q and recurrence intervals mean q  is illustrated in 

Figure2(b), whose curve can be fitted by
2.530.73q q  . The mean recurrence 

intervals q   increases with the increase of threshold q . The similar relation 

between 
Q andQ can be obtained, i.e., 

2.551.14Q Q  . For the simplicity, 

set the q     or Q     in this paper. 
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Figure 2. Volatility recurrence intervals and the relationship between
q   

        and q. 

 

3. The probability density function of recurrence intervals 

 

The probability distribution of volatility and trading volume recurrence 

intervals are illustrated in Figure3 (a) and (c). It seems that there is no regularity in 

probability density curves. However, we found that 

         2 3 4 5 6q q q q qP P P P P            for the head of probability 

densities and          2 3 4 5 6q q q q qP P P P P            for the tail in 

probability density curves. Two factors can account for this phenomenon. Firstly, 

compared to small threshold q, the number of recurrence intervals with big 

threshold is fewer at the head of probability density curves. Secondly, the number 

of recurrence intervals with big threshold is more than recurrence intervals with 

small threshold at the tail of probability density curves. As we known, the 

recurrence intervals mean q     become larger as the threshold value 

bigger. Therefore, we normalize the recurrence intervals by its mean, i.e.,   , 

and plot the scaled probability density curves(  qP    ) in Figure3(b) and (d). 

It is found that there are scaled behaviors in probability density curves of two 

recurrence intervals, i.e., 
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   /q qP f      
                                      

(10) 

   /Q QP g      
                                      

(11) 

where f  and g are the scaling functions, which are independent of threshold q . 

So, if probability density function (PDF) of recurrence intervals for a threshold q  

is known, other PDFs of recurrence intervals with different thresholds q  can be 

deduced by 
2.530.73q q   and Eq.(10) or

2.551.14Q Q  and Eq.(11). 

Especially, it is important for extreme events with less data by deriving PDFs from 

smaller threshold q . 

 

Figure3. Probability and the scaled probability density curves of recurrence  

        intervals 

 

Several empirical studies show that the Power-law or Weibull function can 

be adopted as the scaling function (Zhao et al., 2016; Ren and Zhou, 2010). 

   /f f x cx       , 
minx x
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minx x
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where
minx is the minimum used in fitting the scaling function. The lowest 

minx and 

parameters are estimated by a method put forward by Clauseet al.(2009). If the 

PDF of different thresholds q obey the scaling behavior, the PDF curves should all 

collapse on to a single curve. We use the Kolmogorov-Smirnov (KS) method to test 

this consistency, and select the optimal fitting between Power-law and Weibull 

functions (Ren and Zhou, 2010).  

Table 1 and 2 give the estimated
minx̂ , parameters , c , ,  and p -values 

of goodness for the Power-law and Weibull fitting. When 0.1p  , the fitting 

function can be adopted. For two recurrence intervals, the 
minx̂ of Power-law fitting 

are bigger than that of Weibull fitting, which denotes that the scaling range in 

Weibull fitting is wider. The p -values of two recurrence intervals in Power-law 

fitting are almost close to 0, while 0.82 and 0.83 in Weibull fitting, demonstrating 

that recurrence intervals can be fitted by the Weibull function appropriately. Thus, 

we can use time series model with the Weibull distribution to simulate and forecast 

the recurrence intervals. 

 

Table 1.The KS test of the volatility and trading volume interval distributions  

       by Power-law fitting 

 minx̂    c
 

KS  p  

Volatility 0.5943 1.4292 0.42113 0.0524 0.0000 

Trading 

volume 

6.4142 1.4180 0.4112 0.0691 0.0000 

 

Table 2.The KS test of the volatility and trading volume interval distributions 

       by Weibull fitting 

 minx̂      KS  p  

Volatility 0.0078 0.7054 0.3685 0.0625 0.8200 

Trading 

volume 

2.0452 0.1973 0.2876 0.0707 0.8300 
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4. The memory of recurrence intervals 

If recurrence intervals sequence has the short or long term memory, we can 

build the series model for simulating and predicting the recurrence intervals. So, it 

is interesting to study whether the recurrence intervals sequence possesses memory.  

4.1. The short-term memory 

The conditional probability density function (CPDF)  0|qP   is used to 

study recurrence intervals sequence with short term memory. The  0|qP   is 

named as the probability of interval   conditioned on its proceeding interval
0 . 

If    0|q qP P   , there is no correlation between the interval  and its 

proceeding interval
0 ,i.e., no short term memory. The CPDF of recurrence 

intervals sequence is investigated by 
0  bins. We rearrange the recurrence 

intervals sequences with ascending order, and separate into four bins
1W , 

2W , 
3W , 

and 
4W , among which 

1W  and 
4W  are the smallest and biggest bins 

respectively. Then, CPDFs  0|qP   of volatility and trading volume recurrence 

intervals are plotted in Figure4. The  1|qP W  and  4|qP W  are token as filled 

and open symbols respectively. We take volatility recurrence intervals as an 

example to illustrate recurrence intervals with short memory. It is shown that 

   1 4| |q qP W P W   for smaller /q  , and    4 1| |q qP W P W   for 

larger /q  . In other words, small (large) recurrence intervals are more likely to 

follow such a rule as small (large) recurrence intervals, suggesting the shortterm 

memory existing in two recurrence intervals sequences. Therefore, clustering also 

occurs at recurrence intervals, similar to volatility. Similar results about trading 

volume recurrence intervals can be obtained from Figure4 (b).  
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Figure4. Conditional probability density of the smallest set M1 (filled 

        symbols)and the largest set M4 (open symbols) 

 

4.2. The long-term memory and multifractality 

 

We study long term memory of recurrence intervals based on the DFA 

method advanced by Peng et al.(1994). The DFA method is as follows. Step1. 

Removing the n(=1,2) order polynomial trend in a window of s points.Step2. 

Calculating the detrended fluctuation function  F s  and   HF s s . Step3. 

Analyzing the correlation by the Hurst index H . The series has persistently 

long-term correlated as 0.5 1H  , and uncorrelated as 0.5H  , i.e., a random 

walk. The fluctuation  F s  of recurrence intervals is illustrated in Figure5 (a). It 

is shown that all fluctuations  F s  are nearly all consistent, indicating that H

are fundamentally equivalent in all recurrence intervals. Based on the   HF s s

from Step 3, all H  are greater than 0.5 for all recurrence intervals, seen in Table 3. 

The results show long term memory existing in the volatility recurrence intervals. 

Similar results are obtained from trading volume recurrence intervals. Shuffling the 

volatility sequence, seen in Figure5 (b) and Table 3, the Hurst indexes of all 

recurrence intervals present closely to 0.5, suggesting the longterm memory in 

volatility recurrence intervals may derive from long term memory of volatility.  
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Figure5.Detrended fluctuation function of original and shuffled recurrence 

       intervals 

 

Table 3.Hurst index of volatility and trading volume recurrence intervals 

q 
 volatility trading volume 

2 3 4 5 6 2 3 4 5 6 

Original  0.92 0.93 0.87 0.84 0.81 0.81 0.82 0.8 0.82 0.8 

Shuffled 0.5 0.52 0.54 0.53 0.52 0.52 0.53 0.49 0.49 0.52 

 

We study the multifractality of volatility and trading volume recurrence 

intervals by multifractal detrended fluctuation analysis(MFDFA) (Kantelhardt et al., 

2002), whose algorithm is as follows, the Step 1 is as the same as DFA. Step2. 

Calculating the p-th order fluctuation function  pF s  and the generalized Hurst 

index  h p  by    h p

pF s s . Step3. Calculating the scaling exponents  p

using     1p ph p   , if  h p  or  p  is a nonlinear function of p , the 

time sequence possesses multifractality. Step4. Obtaining singularity strength and 

singularity spectrum  f   by    'h p ph p   and     1f p h p      . 

The broader the singularity spectrum, the more complex the multifractality. As seen 

in Figure6, two recurrence intervals have multifractal feature. Except 2Q  and
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3Q  , all recurrence intervals are almost the same  , where
max min    . 

So, multifractality should be considered in modeling the recurrence intervals 

sequence.  

 

Figure6.Multifractality of volatility and trading volume recurrence intervals 

 

5. The relationship between volatility and trading volume recurrence  

  intervals 

 

Figure7 plots the volatility recurrence intervals sequence and its 

corresponding volume recurrence intervals. It is shown that the volatility 

recurrence intervals are consistent with trading volume recurrence intervals. Thus, 

we investigate the relationship of two recurrence intervals sequences by statistical 

methods. We calculate the conditional probability that the trading volumes have the 

same recurrence intervals as that of volatility. Set   
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when  r t q and  qr t q  .The  QP r q  measures the possibility of 

volatility recurrence intervals equals trading volume recurrence intervals 

synchronously. Similarly, the conditional probability  
,q

q

v Q

q

N
P v Q

N








   can 

be defined based on trading volume recurrence intervals with thresholdQ .  

Clearly,   1qP v Q   as 0q  and   1qP r q   as 0Q  . 

 

Figure7.The relation between volatility and trading volume recurrence 

intervals 

 

As illustrated in Figure7(c), the conditional probability of volatility and 

trading volume recurrence intervals increase when volatility threshold q  increases. 

Similar conclusion is deduced by the probability plot of  qP v Q  , shown in 

Figure7 (d). This result suggests that the larger the thresholds q andQ , the higher 
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and Q mean that volatility and trading volume are large, implying that large 

volatility and volume are synchronous in time. 

 

6. Conclusions  

Based on the statistical and nonlinear methods, this paper analyzes the 

characteristics of volatility and trading volume recurrence intervals of CSI 300 

future. The following conclusions are obtained,  

1). Before the research on recurrence intervals, it is only known that the 

volatility possesses the clustering phenomenon, i.e., large (small) volatility is easier 

to follow large (small) volatility, but how long to appear next is unknown. The 

recurrence intervals analysis provides a way to understand its inherent mechanism. 

2). The probability density of two recurrence intervals for different 

thresholds have a scaling behavior. Thus, the probability of extreme events can be 

deduced by normal events, i.e., the volatility recurrence intervals with threshold 

smaller q . 

3). There is a memory with short and longterm in the volatility and volume 

recurrence intervals, indicating the recurrence intervals can be forecasted. 

Considering the similarity between recurrence intervals and duration sequences, the 

Autoregressive Conditional Duration model (ACD) model canbe employed to 

construct the recurrence intervals sequence. Besides, the volatility and trading 

recurrence intervals have multifractality, so the multi-scale feature should be added 

to ACD model.   

4). The co-movement between large trading volumes and large volatility is 

verified by analyzing the volatility and trading volume recurrence intervals. In 

future, we will study the dependence of trading volumes on volatility, and the risk 

estimation by recurrence intervals in financial markets.  
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